大数据领域,可以说是过去 20 年计算机工程界发展最迅速、产生影响最大的一个领域。很多看起来和“大数据”没有什么关系的开源系统,都是从“大数据”这个领域里培育出来的,比如说 Kubernetes。
那么,今天我们去研读“大数据”领域的经典论文,可以说是一件投入产出比很高的事情。通过学习大数据相关的论文,我们会对计算机工程的各个领域都有更加深刻的认知,这不仅仅是对于“大数据工程师”这样的职位有用,对于做各类后端开发和系统开发的工程师来说,都会有很大的帮助。
但是我们应该怎么学呢?在网上随便一搜,虽然也能找到不少论文被人翻译成了中文,但是往往也只能告诉你“是什么”,却没有办法让你理解“为什么”。这些翻译或者文章,常常给出的是“Bigtable 系统是一个稀疏的、分布式的排序好的 Map”,却让你没有办法让你理解为什么 Bigtable 是这样设计的。
使用各种开源框架解决大数据问题的经验,带你梳理整个大数据系统的发展脉络,为你分析在整个领域的系统不断往前迭代的过程中,所遇到的具体场景下的问题,还会深入解读其中重要的设计决策背后,能够联系到的计算机底层原理。
这样一来,通过课程内容知识的讲解,你就能够把论文和论文之间联系起来,把论文和具体技术场景联系起来,把论文和计算机原理的底层知识点联系起来。更进一步,你会真正理解 Why,而不是只知道 What。
声明:大虾资源站是一个资源分享和技术交流平台,本站所发布的一切破解补丁、注册机和注册信息及软件的解密分析文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。